↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval1(TRUE, x, y, z) → eval(-@z(x, 1@z), y, z)
Cond_eval(TRUE, x, y, z) → eval(x, y, z)
Cond_eval2(TRUE, x, y, z) → eval(x, -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval1(&&(&&(>@z(+@z(x, y), z), >=@z(z, 0@z)), >@z(x, 0@z)), x, y, z)
eval(x, y, z) → Cond_eval2(&&(&&(&&(>@z(+@z(x, y), z), >=@z(z, 0@z)), >=@z(0@z, x)), >@z(y, 0@z)), x, y, z)
eval(x, y, z) → Cond_eval(&&(&&(&&(>@z(+@z(x, y), z), >=@z(z, 0@z)), >=@z(0@z, x)), >=@z(0@z, y)), x, y, z)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval1(TRUE, x, y, z) → eval(-@z(x, 1@z), y, z)
Cond_eval(TRUE, x, y, z) → eval(x, y, z)
Cond_eval2(TRUE, x, y, z) → eval(x, -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval1(&&(&&(>@z(+@z(x, y), z), >=@z(z, 0@z)), >@z(x, 0@z)), x, y, z)
eval(x, y, z) → Cond_eval2(&&(&&(&&(>@z(+@z(x, y), z), >=@z(z, 0@z)), >=@z(0@z, x)), >@z(y, 0@z)), x, y, z)
eval(x, y, z) → Cond_eval(&&(&&(&&(>@z(+@z(x, y), z), >=@z(z, 0@z)), >=@z(0@z, x)), >=@z(0@z, y)), x, y, z)
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(x[0] →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(x[0] →* x[2]))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(x[0] →* x[3]))
(1) -> (5), if ((z[1] →* z[5])∧(x[1] →* x[5])∧(y[1] →* y[5])∧(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)) →* TRUE))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])) →* TRUE))
(3) -> (4), if ((z[3] →* z[4])∧(x[3] →* x[4])∧(y[3] →* y[4])∧(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)) →* TRUE))
(4) -> (1), if ((-@z(y[4], 1@z) →* y[1])∧(z[4] →* z[1])∧(x[4] →* x[1]))
(4) -> (2), if ((-@z(y[4], 1@z) →* y[2])∧(z[4] →* z[2])∧(x[4] →* x[2]))
(4) -> (3), if ((-@z(y[4], 1@z) →* y[3])∧(z[4] →* z[3])∧(x[4] →* x[3]))
(5) -> (1), if ((y[5] →* y[1])∧(z[5] →* z[1])∧(-@z(x[5], 1@z) →* x[1]))
(5) -> (2), if ((y[5] →* y[2])∧(z[5] →* z[2])∧(-@z(x[5], 1@z) →* x[2]))
(5) -> (3), if ((y[5] →* y[3])∧(z[5] →* z[3])∧(-@z(x[5], 1@z) →* x[3]))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(x[0] →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(x[0] →* x[2]))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(x[0] →* x[3]))
(1) -> (5), if ((z[1] →* z[5])∧(x[1] →* x[5])∧(y[1] →* y[5])∧(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)) →* TRUE))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])) →* TRUE))
(3) -> (4), if ((z[3] →* z[4])∧(x[3] →* x[4])∧(y[3] →* y[4])∧(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)) →* TRUE))
(4) -> (1), if ((-@z(y[4], 1@z) →* y[1])∧(z[4] →* z[1])∧(x[4] →* x[1]))
(4) -> (2), if ((-@z(y[4], 1@z) →* y[2])∧(z[4] →* z[2])∧(x[4] →* x[2]))
(4) -> (3), if ((-@z(y[4], 1@z) →* y[3])∧(z[4] →* z[3])∧(x[4] →* x[3]))
(5) -> (1), if ((y[5] →* y[1])∧(z[5] →* z[1])∧(-@z(x[5], 1@z) →* x[1]))
(5) -> (2), if ((y[5] →* y[2])∧(z[5] →* z[2])∧(-@z(x[5], 1@z) →* x[2]))
(5) -> (3), if ((y[5] →* y[3])∧(z[5] →* z[3])∧(-@z(x[5], 1@z) →* x[3]))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
(1) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧y[0]=y[2]1∧y[2]=y[0]∧x[0]=x[2]1∧&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2]))=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(x[0], y[0], z[0])∧(UIncreasing(EVAL(x[0], y[0], z[0])), ≥))
(2) (>=@z(0@z, y[2])=TRUE∧>=@z(0@z, x[2])=TRUE∧>@z(+@z(x[2], y[2]), z[2])=TRUE∧>=@z(z[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(x[2], y[2], z[2])∧(UIncreasing(EVAL(x[0], y[0], z[0])), ≥))
(3) ((-1)y[2] ≥ 0∧(-1)x[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(4) ((-1)y[2] ≥ 0∧(-1)x[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(5) ((-1)x[2] ≥ 0∧(-1)y[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(6) (y[0]=y[3]∧z[2]=z[0]∧x[2]=x[0]∧x[0]=x[3]∧y[2]=y[0]∧z[0]=z[3]∧&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2]))=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(x[0], y[0], z[0])∧(UIncreasing(EVAL(x[0], y[0], z[0])), ≥))
(7) (>=@z(0@z, y[2])=TRUE∧>=@z(0@z, x[2])=TRUE∧>@z(+@z(x[2], y[2]), z[2])=TRUE∧>=@z(z[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(x[2], y[2], z[2])∧(UIncreasing(EVAL(x[0], y[0], z[0])), ≥))
(8) ((-1)y[2] ≥ 0∧(-1)x[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(9) ((-1)y[2] ≥ 0∧(-1)x[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(10) ((-1)x[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧(-1)y[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧-1 ≥ 0∧(-1)Bound + (-1)z[2] ≥ 0)
(11) (z[2]=z[0]∧x[2]=x[0]∧y[2]=y[0]∧y[0]=y[1]∧x[0]=x[1]∧z[0]=z[1]∧&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2]))=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(x[0], y[0], z[0])∧(UIncreasing(EVAL(x[0], y[0], z[0])), ≥))
(12) (>=@z(0@z, y[2])=TRUE∧>=@z(0@z, x[2])=TRUE∧>@z(+@z(x[2], y[2]), z[2])=TRUE∧>=@z(z[2], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(x[2], y[2], z[2])∧(UIncreasing(EVAL(x[0], y[0], z[0])), ≥))
(13) ((-1)y[2] ≥ 0∧(-1)x[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(14) ((-1)y[2] ≥ 0∧(-1)x[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0∧z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(15) ((-1)y[2] ≥ 0∧(-1)x[2] ≥ 0∧z[2] ≥ 0∧-1 + x[2] + y[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(x[0], y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] ≥ 0∧-1 ≥ 0)
(16) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥))
(17) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥))
(20) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 = 0)
(21) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])), x[2], y[2], z[2])), ≥))
(22) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) ((UIncreasing(COND_EVAL(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(25) (0 = 0∧(UIncreasing(COND_EVAL(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(26) (EVAL(x[3], y[3], z[3])≥NonInfC∧EVAL(x[3], y[3], z[3])≥COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥))
(27) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) (0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(31) (z[4]=z[3]1∧z[3]=z[4]∧-@z(y[4], 1@z)=y[3]1∧&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z))=TRUE∧y[3]=y[4]∧x[3]=x[4]∧x[4]=x[3]1 ⇒ COND_EVAL2(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL2(TRUE, x[4], y[4], z[4])≥EVAL(x[4], -@z(y[4], 1@z), z[4])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(32) (>@z(y[3], 0@z)=TRUE∧>=@z(0@z, x[3])=TRUE∧>@z(+@z(x[3], y[3]), z[3])=TRUE∧>=@z(z[3], 0@z)=TRUE ⇒ COND_EVAL2(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL2(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(33) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(34) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(35) (-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧(-1)x[3] ≥ 0∧z[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(36) (-1 + (-1)x[3] + y[3] + (-1)z[3] ≥ 0∧x[3] ≥ 0∧z[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(37) (y[3] ≥ 0∧x[3] ≥ 0∧z[3] ≥ 0∧x[3] + z[3] + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(38) (z[3]=z[4]∧&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z))=TRUE∧y[3]=y[4]∧z[4]=z[1]∧x[3]=x[4]∧-@z(y[4], 1@z)=y[1]∧x[4]=x[1] ⇒ COND_EVAL2(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL2(TRUE, x[4], y[4], z[4])≥EVAL(x[4], -@z(y[4], 1@z), z[4])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(39) (>@z(y[3], 0@z)=TRUE∧>=@z(0@z, x[3])=TRUE∧>@z(+@z(x[3], y[3]), z[3])=TRUE∧>=@z(z[3], 0@z)=TRUE ⇒ COND_EVAL2(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL2(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(40) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) ((-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧z[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(43) (x[3] ≥ 0∧-1 + y[3] ≥ 0∧z[3] ≥ 0∧-1 + (-1)x[3] + y[3] + (-1)z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(44) (x[3] ≥ 0∧y[3] ≥ 0∧z[3] ≥ 0∧(-1)x[3] + y[3] + (-1)z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(45) (x[3] ≥ 0∧x[3] + z[3] + y[3] ≥ 0∧z[3] ≥ 0∧y[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(46) (z[4]=z[2]∧z[3]=z[4]∧&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z))=TRUE∧y[3]=y[4]∧x[3]=x[4]∧-@z(y[4], 1@z)=y[2]∧x[4]=x[2] ⇒ COND_EVAL2(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL2(TRUE, x[4], y[4], z[4])≥EVAL(x[4], -@z(y[4], 1@z), z[4])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(47) (>@z(y[3], 0@z)=TRUE∧>=@z(0@z, x[3])=TRUE∧>@z(+@z(x[3], y[3]), z[3])=TRUE∧>=@z(z[3], 0@z)=TRUE ⇒ COND_EVAL2(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL2(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(48) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(49) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(50) (z[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(51) (z[3] ≥ 0∧x[3] ≥ 0∧-1 + y[3] ≥ 0∧-1 + (-1)x[3] + y[3] + (-1)z[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(52) (z[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0∧(-1)x[3] + y[3] + (-1)z[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(53) (z[3] ≥ 0∧x[3] ≥ 0∧x[3] + z[3] + y[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(54) (z[5]=z[1]1∧z[1]=z[5]∧y[5]=y[1]1∧&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z))=TRUE∧-@z(x[5], 1@z)=x[1]1∧x[1]=x[5]∧y[1]=y[5] ⇒ COND_EVAL1(TRUE, x[5], y[5], z[5])≥NonInfC∧COND_EVAL1(TRUE, x[5], y[5], z[5])≥EVAL(-@z(x[5], 1@z), y[5], z[5])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(55) (>@z(x[1], 0@z)=TRUE∧>@z(+@z(x[1], y[1]), z[1])=TRUE∧>=@z(z[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(-@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(56) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(57) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(58) (x[1] + -1 ≥ 0∧z[1] ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(59) ((-1)y[1] + z[1] + x[1] ≥ 0∧z[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(60) (y[1] + z[1] + x[1] ≥ 0∧z[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(61) ((-1)y[1] + z[1] + x[1] ≥ 0∧z[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(62) (-@z(x[5], 1@z)=x[2]∧z[5]=z[2]∧z[1]=z[5]∧&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z))=TRUE∧y[5]=y[2]∧x[1]=x[5]∧y[1]=y[5] ⇒ COND_EVAL1(TRUE, x[5], y[5], z[5])≥NonInfC∧COND_EVAL1(TRUE, x[5], y[5], z[5])≥EVAL(-@z(x[5], 1@z), y[5], z[5])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(63) (>@z(x[1], 0@z)=TRUE∧>@z(+@z(x[1], y[1]), z[1])=TRUE∧>=@z(z[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(-@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(64) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(65) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(66) (z[1] ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧x[1] + -1 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(67) (z[1] ≥ 0∧x[1] ≥ 0∧(-1)y[1] + z[1] + x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(68) (z[1] ≥ 0∧x[1] ≥ 0∧(-1)y[1] + z[1] + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(69) (z[1] ≥ 0∧x[1] ≥ 0∧y[1] + z[1] + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(70) (-@z(x[5], 1@z)=x[3]∧y[5]=y[3]∧z[1]=z[5]∧z[5]=z[3]∧&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z))=TRUE∧x[1]=x[5]∧y[1]=y[5] ⇒ COND_EVAL1(TRUE, x[5], y[5], z[5])≥NonInfC∧COND_EVAL1(TRUE, x[5], y[5], z[5])≥EVAL(-@z(x[5], 1@z), y[5], z[5])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(71) (>@z(x[1], 0@z)=TRUE∧>@z(+@z(x[1], y[1]), z[1])=TRUE∧>=@z(z[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(-@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(72) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(73) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧0 ≥ 0)
(74) (z[1] ≥ 0∧x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(75) (z[1] ≥ 0∧x[1] ≥ 0∧x[1] + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(76) (z[1] ≥ 0∧x[1] ≥ 0∧x[1] + y[1] + (-1)z[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(77) (z[1] ≥ 0∧x[1] ≥ 0∧x[1] + (-1)y[1] + (-1)z[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
(78) (z[1] ≥ 0∧y[1] + z[1] + x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL2(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2, x3)) = (-1)x3
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x1
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(x[0], y[0], z[0])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(x[0], y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(&&(&&(>@z(+@z(x[2], y[2]), z[2]), >=@z(z[2], 0@z)), >=@z(0@z, x[2])), >=@z(0@z, y[2])), x[2], y[2], z[2])
EVAL(x[3], y[3], z[3]) → COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])
COND_EVAL2(TRUE, x[4], y[4], z[4]) → EVAL(x[4], -@z(y[4], 1@z), z[4])
COND_EVAL1(TRUE, x[5], y[5], z[5]) → EVAL(-@z(x[5], 1@z), y[5], z[5])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
(1) -> (5), if ((z[1] →* z[5])∧(x[1] →* x[5])∧(y[1] →* y[5])∧(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)) →* TRUE))
(4) -> (2), if ((-@z(y[4], 1@z) →* y[2])∧(z[4] →* z[2])∧(x[4] →* x[2]))
(4) -> (3), if ((-@z(y[4], 1@z) →* y[3])∧(z[4] →* z[3])∧(x[4] →* x[3]))
(5) -> (2), if ((y[5] →* y[2])∧(z[5] →* z[2])∧(-@z(x[5], 1@z) →* x[2]))
(5) -> (3), if ((y[5] →* y[3])∧(z[5] →* z[3])∧(-@z(x[5], 1@z) →* x[3]))
(3) -> (4), if ((z[3] →* z[4])∧(x[3] →* x[4])∧(y[3] →* y[4])∧(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)) →* TRUE))
(4) -> (1), if ((-@z(y[4], 1@z) →* y[1])∧(z[4] →* z[1])∧(x[4] →* x[1]))
(5) -> (1), if ((y[5] →* y[1])∧(z[5] →* z[1])∧(-@z(x[5], 1@z) →* x[1]))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(1) -> (5), if ((z[1] →* z[5])∧(x[1] →* x[5])∧(y[1] →* y[5])∧(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)) →* TRUE))
(4) -> (3), if ((-@z(y[4], 1@z) →* y[3])∧(z[4] →* z[3])∧(x[4] →* x[3]))
(5) -> (3), if ((y[5] →* y[3])∧(z[5] →* z[3])∧(-@z(x[5], 1@z) →* x[3]))
(3) -> (4), if ((z[3] →* z[4])∧(x[3] →* x[4])∧(y[3] →* y[4])∧(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)) →* TRUE))
(4) -> (1), if ((-@z(y[4], 1@z) →* y[1])∧(z[4] →* z[1])∧(x[4] →* x[1]))
(5) -> (1), if ((y[5] →* y[1])∧(z[5] →* z[1])∧(-@z(x[5], 1@z) →* x[1]))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
(1) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(4) (1 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥))
(5) (0 = 0∧0 = 0∧1 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 = 0)
(6) (z[4]=z[3]1∧z[3]=z[4]∧-@z(y[4], 1@z)=y[3]1∧&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z))=TRUE∧y[3]=y[4]∧x[3]=x[4]∧x[4]=x[3]1 ⇒ COND_EVAL2(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL2(TRUE, x[4], y[4], z[4])≥EVAL(x[4], -@z(y[4], 1@z), z[4])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(7) (>@z(y[3], 0@z)=TRUE∧>=@z(0@z, x[3])=TRUE∧>@z(+@z(x[3], y[3]), z[3])=TRUE∧>=@z(z[3], 0@z)=TRUE ⇒ COND_EVAL2(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL2(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(8) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(9) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(10) (-1 + y[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧(-1)x[3] ≥ 0∧z[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(11) (-1 + y[3] ≥ 0∧-1 + (-1)x[3] + y[3] + (-1)z[3] ≥ 0∧x[3] ≥ 0∧z[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(12) (x[3] + z[3] + y[3] ≥ 0∧y[3] ≥ 0∧x[3] ≥ 0∧z[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(13) (z[3]=z[4]∧&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z))=TRUE∧y[3]=y[4]∧z[4]=z[1]∧x[3]=x[4]∧-@z(y[4], 1@z)=y[1]∧x[4]=x[1] ⇒ COND_EVAL2(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL2(TRUE, x[4], y[4], z[4])≥EVAL(x[4], -@z(y[4], 1@z), z[4])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(14) (>@z(y[3], 0@z)=TRUE∧>=@z(0@z, x[3])=TRUE∧>@z(+@z(x[3], y[3]), z[3])=TRUE∧>=@z(z[3], 0@z)=TRUE ⇒ COND_EVAL2(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL2(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(15) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(16) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) ((-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧-1 + y[3] ≥ 0∧z[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(18) (x[3] ≥ 0∧-1 + (-1)x[3] + y[3] + (-1)z[3] ≥ 0∧-1 + y[3] ≥ 0∧z[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(19) (x[3] ≥ 0∧y[3] ≥ 0∧x[3] + z[3] + y[3] ≥ 0∧z[3] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(20) (EVAL(x[3], y[3], z[3])≥NonInfC∧EVAL(x[3], y[3], z[3])≥COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥))
(21) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) (0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(25) (z[5]=z[1]1∧z[1]=z[5]∧y[5]=y[1]1∧&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z))=TRUE∧-@z(x[5], 1@z)=x[1]1∧x[1]=x[5]∧y[1]=y[5] ⇒ COND_EVAL1(TRUE, x[5], y[5], z[5])≥NonInfC∧COND_EVAL1(TRUE, x[5], y[5], z[5])≥EVAL(-@z(x[5], 1@z), y[5], z[5])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(26) (>@z(x[1], 0@z)=TRUE∧>@z(+@z(x[1], y[1]), z[1])=TRUE∧>=@z(z[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(-@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(27) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧-2 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0∧0 ≥ 0)
(28) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧-2 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0∧0 ≥ 0)
(29) (z[1] ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧x[1] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0)
(30) (z[1] ≥ 0∧x[1] + y[1] + (-1)z[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0)
(31) (z[1] ≥ 0∧x[1] + y[1] + (-1)z[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0)
(32) (z[1] ≥ 0∧x[1] + (-1)y[1] + (-1)z[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[1] + (-1)y[1] + x[1] ≥ 0)
(33) (z[1] ≥ 0∧x[1] ≥ 0∧y[1] + z[1] + x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0)
(34) (-@z(x[5], 1@z)=x[3]∧y[5]=y[3]∧z[1]=z[5]∧z[5]=z[3]∧&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z))=TRUE∧x[1]=x[5]∧y[1]=y[5] ⇒ COND_EVAL1(TRUE, x[5], y[5], z[5])≥NonInfC∧COND_EVAL1(TRUE, x[5], y[5], z[5])≥EVAL(-@z(x[5], 1@z), y[5], z[5])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(35) (>@z(x[1], 0@z)=TRUE∧>@z(+@z(x[1], y[1]), z[1])=TRUE∧>=@z(z[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(-@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(36) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧-2 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0∧0 ≥ 0)
(37) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧-2 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0∧0 ≥ 0)
(38) (z[1] ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧x[1] + -1 ≥ 0 ⇒ 0 ≥ 0∧-2 + (-1)Bound + (-1)z[1] + y[1] + x[1] ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(39) (z[1] ≥ 0∧x[1] ≥ 0∧(-1)y[1] + z[1] + x[1] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(40) (z[1] ≥ 0∧x[1] ≥ 0∧(-1)y[1] + z[1] + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(41) (z[1] ≥ 0∧x[1] ≥ 0∧y[1] + z[1] + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL2(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + x2 + (-1)x1
POL(0@z) = 0
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x2 + x1
POL(FALSE) = 1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + x2 + (-1)x1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
EVAL(x[3], y[3], z[3]) → COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])
COND_EVAL1(TRUE, x[5], y[5], z[5]) → EVAL(-@z(x[5], 1@z), y[5], z[5])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])
COND_EVAL2(TRUE, x[4], y[4], z[4]) → EVAL(x[4], -@z(y[4], 1@z), z[4])
COND_EVAL1(TRUE, x[5], y[5], z[5]) → EVAL(-@z(x[5], 1@z), y[5], z[5])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
&&(FALSE, TRUE)1 ↔ FALSE1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(1) -> (5), if ((z[1] →* z[5])∧(x[1] →* x[5])∧(y[1] →* y[5])∧(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)) →* TRUE))
(4) -> (1), if ((-@z(y[4], 1@z) →* y[1])∧(z[4] →* z[1])∧(x[4] →* x[1]))
(5) -> (1), if ((y[5] →* y[1])∧(z[5] →* z[1])∧(-@z(x[5], 1@z) →* x[1]))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(1) -> (5), if ((z[1] →* z[5])∧(x[1] →* x[5])∧(y[1] →* y[5])∧(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)) →* TRUE))
(5) -> (1), if ((y[5] →* y[1])∧(z[5] →* z[1])∧(-@z(x[5], 1@z) →* x[1]))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
(1) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥))
(5) (0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])), ≥))
(6) (z[5]=z[1]1∧z[1]=z[5]∧y[5]=y[1]1∧&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z))=TRUE∧-@z(x[5], 1@z)=x[1]1∧x[1]=x[5]∧y[1]=y[5] ⇒ COND_EVAL1(TRUE, x[5], y[5], z[5])≥NonInfC∧COND_EVAL1(TRUE, x[5], y[5], z[5])≥EVAL(-@z(x[5], 1@z), y[5], z[5])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(7) (>@z(x[1], 0@z)=TRUE∧>@z(+@z(x[1], y[1]), z[1])=TRUE∧>=@z(z[1], 0@z)=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(-@z(x[1], 1@z), y[1], z[1])∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥))
(8) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] + (2)x[1] ≥ 0∧1 ≥ 0)
(9) (x[1] + -1 ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] + (2)x[1] ≥ 0∧1 ≥ 0)
(10) (x[1] + -1 ≥ 0∧z[1] ≥ 0∧x[1] + -1 + y[1] + (-1)z[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] + (2)x[1] ≥ 0)
(11) (x[1] ≥ 0∧z[1] ≥ 0∧x[1] + y[1] + (-1)z[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧1 + (-1)Bound + (-1)z[1] + y[1] + (2)x[1] ≥ 0)
(12) (x[1] ≥ 0∧z[1] ≥ 0∧x[1] + y[1] + (-1)z[1] ≥ 0∧y[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧1 + (-1)Bound + (-1)z[1] + y[1] + (2)x[1] ≥ 0)
(13) (x[1] ≥ 0∧z[1] ≥ 0∧x[1] + (-1)y[1] + (-1)z[1] ≥ 0∧y[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧1 + (-1)Bound + (-1)z[1] + (-1)y[1] + (2)x[1] ≥ 0)
(14) (y[1] + z[1] + x[1] ≥ 0∧z[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[5], 1@z), y[5], z[5])), ≥)∧1 + (-1)Bound + z[1] + y[1] + (2)x[1] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + (2)x2 + (-1)x1
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x2 + (2)x1
POL(FALSE) = 0
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL1(TRUE, x[5], y[5], z[5]) → EVAL(-@z(x[5], 1@z), y[5], z[5])
COND_EVAL1(TRUE, x[5], y[5], z[5]) → EVAL(-@z(x[5], 1@z), y[5], z[5])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(&&(>@z(+@z(x[1], y[1]), z[1]), >=@z(z[1], 0@z)), >@z(x[1], 0@z)), x[1], y[1], z[1])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(4) -> (3), if ((-@z(y[4], 1@z) →* y[3])∧(z[4] →* z[3])∧(x[4] →* x[3]))
(3) -> (4), if ((z[3] →* z[4])∧(x[3] →* x[4])∧(y[3] →* y[4])∧(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)) →* TRUE))
(4) -> (1), if ((-@z(y[4], 1@z) →* y[1])∧(z[4] →* z[1])∧(x[4] →* x[1]))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(4) -> (3), if ((-@z(y[4], 1@z) →* y[3])∧(z[4] →* z[3])∧(x[4] →* x[3]))
(3) -> (4), if ((z[3] →* z[4])∧(x[3] →* x[4])∧(y[3] →* y[4])∧(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)) →* TRUE))
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)
(1) (z[4]=z[3]1∧z[3]=z[4]∧-@z(y[4], 1@z)=y[3]1∧&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z))=TRUE∧y[3]=y[4]∧x[3]=x[4]∧x[4]=x[3]1 ⇒ COND_EVAL2(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL2(TRUE, x[4], y[4], z[4])≥EVAL(x[4], -@z(y[4], 1@z), z[4])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(2) (>@z(y[3], 0@z)=TRUE∧>=@z(0@z, x[3])=TRUE∧>@z(+@z(x[3], y[3]), z[3])=TRUE∧>=@z(z[3], 0@z)=TRUE ⇒ COND_EVAL2(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL2(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥))
(3) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧(-1)Bound + (-1)z[3] + y[3] + x[3] ≥ 0∧0 ≥ 0)
(4) (-1 + y[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧(-1)Bound + (-1)z[3] + y[3] + x[3] ≥ 0∧0 ≥ 0)
(5) (z[3] ≥ 0∧-1 + x[3] + y[3] + (-1)z[3] ≥ 0∧(-1)x[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ (-1)Bound + (-1)z[3] + y[3] + x[3] ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(6) (z[3] ≥ 0∧-1 + (-1)x[3] + y[3] + (-1)z[3] ≥ 0∧x[3] ≥ 0∧-1 + y[3] ≥ 0 ⇒ (-1)Bound + (-1)z[3] + y[3] + (-1)x[3] ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(7) (z[3] ≥ 0∧y[3] ≥ 0∧x[3] ≥ 0∧x[3] + z[3] + y[3] ≥ 0 ⇒ 1 + (-1)Bound + y[3] ≥ 0∧(UIncreasing(EVAL(x[4], -@z(y[4], 1@z), z[4])), ≥)∧0 ≥ 0)
(8) (EVAL(x[3], y[3], z[3])≥NonInfC∧EVAL(x[3], y[3], z[3])≥COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥))
(9) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(10) ((UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) (0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0)
(12) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL2(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + x2 + (-1)x1
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(EVAL(x1, x2, x3)) = (-1)x3 + x2 + x1
POL(FALSE) = 1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL2(TRUE, x[4], y[4], z[4]) → EVAL(x[4], -@z(y[4], 1@z), z[4])
COND_EVAL2(TRUE, x[4], y[4], z[4]) → EVAL(x[4], -@z(y[4], 1@z), z[4])
EVAL(x[3], y[3], z[3]) → COND_EVAL2(&&(&&(&&(>@z(+@z(x[3], y[3]), z[3]), >=@z(z[3], 0@z)), >=@z(0@z, x[3])), >@z(y[3], 0@z)), x[3], y[3], z[3])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
eval(x0, x1, x2)